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ON THE MOTION OF DYNAMICALLY CONTROLLED SYSTEMS WITH VARIABLE MASSES* 

N. G. APYKHTIN and V. F. IAKOVLEV 

Equations of motion are derived for a mechanical system with variable masses and 

superimposed constraints, whose responses are reactive forces. A theory is develop- 

ed for the solution of an optimal motion control problem for this kind of system 

when reactive forces are taken as controls. As an example a problem on contact in 

minimal time is solved by the method of parallel approach of some target and a 

system of point of variable mass. 

1. We analyze a mechanical system of f1 mass points ph. (k m: 1, . . . . n) whose positions 

in an absolute frame of reference are determined by their Cartesian coordinates z,(v =I, . 

.I 3n). Let prescribed forces F,.(X,) act on points PI, and let their motion be subject to com- 

patible and independent constraints 

fa (G, XY', 1) = 0 (X == 1, ., a) (1.1) 

among which a, constraints are geometric. The virtual displacements, admitting of superimpos- 

ed constraints, are determined by a independent relations /l/ 

an  ̂

gf- 
ax,=0 (a=1,...,a) 

while the system's configuration is described by II = 3rz- a, independent Lagrangian coordinat- 

es 'I~, ., 97,. Because of the a2 =h - a, nonholonomic constraints in (1.1) the variations of 

the latter coordinates are connected by az conditions 

which permit us to express Q3 independent variations as linear homogeneous functions of 1 

independent quantities 6qi (i = 1, . . ., I). The variations of the Cartesian coordinates of the 

system's points take the form 

Here c,,(c/~, qj', /) are known functions of the variables indicated, while the quantities 6r/i are 
arbitrary. 

2. As is well known /2/, the constraints imposed on the system depend upon the physical 

nature of the mechanisms effecting them, in view of which the characteristic of the constraints 
is introduced by an axiom expressing the actually existing empirical relations. We assume that 
the mechanical system being analyzed is a system of mass points with variable masses,while 
the constraints are imposed by reactive forces that go into action alltomatically and are auto- 

matically regulated. In other words, let the responses to the constraints being examined be 
reactive forces Hh.(Rv) going into action automatically and such that the accelerations OF 

the points at any instant and for any positions and velocities consistent with the constraints 
form a system of feasible accelerations, i.e., do not contradict the conditions 

(2.1) 

The equality 

valid for any virtual displacements, serves as an axiom of ideal constraints. The necessary 
and sufficient condition for this isnthe fulfillment of the conditions /2/ 

R, = 
x 

h”-g% (Y-t,.. 32) 
a=1 y 
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Let the sum of the elementary works of the reactive forces at every virtual displacement 
equal b+ 0. Then there exists an infinite set of reactive forces 13, (&') possessing the 
property that R,'&, + X2'6x, -t- . . . + R:tn,‘6.k, = b for every virtual displacement. The fulfill- 
ment of the equalities 

is necessary and sufficient for this. Among the systems of Ri;' there exists one and only one 
system of reactive forces @$. (as) such that the vectors (It,& define a certain virtual dis- 
placement 6X, = aqit (v =:= 1, . . ., 3,t). Indeed, let 

",I 
2: 0$x,= 2 R,6x, 
v=, r=1 

on every virtual displacement. Hence, by virtue of the independence of the quantities 6q, 
we have the 1 equations 

nn 
,_, ('1% -- R,)C,i = 0 (i = 1, . , 1) 

which jointly with the IL equations 

form a system of u + 1= 3n equations for the determination of the 3n unknowns @,(v ==I, . . 

., 3n). The determinant of this system is nonzero because otherwise there would exist a system 
of forces @)k +O for which 

'1 71 

B=L b=, 

is not possible. Consequently, there exists one and only one system of variables (&.(ic = 1, . . 
-1 4% while the reactive force Rti can be uniquely decomposed into two components iV& and 
mp such that N&r, + N&X; i . . . + Na,,h.~~~= 0 on every virtual displacement, while the vec- 

tors &St are found among the virtual displacements. Here 

the coefficients h, and ui are the same for all points of the system. The quantity lvk is 
called a reactive constraint force, while Qh. is called a reactive thrust force. 

If at the instant t being examined we know the positions, the velocities, the laws of 
variation of the masses of the system's points, and the acting forces, then the constraint 
forces are determined uniquely and are one and the same independently of whether or not the 
system possesses a thrust. Indeed, the equations of motions of the points can be written as 

(2.2) 

Substituting from here the quantities X; into Eq. (2.11, we obtain a system of a linear equa- 
tions in the a variables a. h Consequently, for a system not possessing thrust a know- 
ledge of the external forces under specified initial conditions and point mass variation laws 
is sufficient for the determination of the motion and of the constraint forces. If the laws 
of variation of the thrust forces are known, then for the description of the system's motion 
we have the 391 equations (2.2) to which we should add on the Q constraint equations and the 
1 additional relations obtained from the thrust law, 

3. Let nonholonomic constraints be absent in relations (1.1). Then the variations of 
the Cartesian coordinates are expressed by the relations 

we multiply each of the equations of system (z-2) by 6x, and we add. After transfOrSiatiOnS 

we have (3.1) 
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We introduce the notation 

d’ d’T 
-7zz dt aqj 

*=I 

and, because the quantities 6qj are independent, from (3.1) be obtain the equations of motion 

of the system in the form of Lagrange equations of the second kind 

The quantities 

Pj = c m,+$=$ (j=l,...,h) 
J I 

(3.2) 

(3.3) 

are called generalized momenta. Setting (hrlj)’ = 6qj’t we represent (3.1) as a centralLagrange 

equation 

p&j= 6T + 
,=1 

The kinetic energy's Hessian, computed under the assumption of constancy of the system's mass, 

cannot be zero; therefore, (3.3) is solvable relative to the generalized velocities ’ rlj v 
while the generating function of the inverse transformation is determined in the form 

K = ,il Pjqj’ - T (Qjv Sj’t t) 

Function K together with the central Lagrange equations enables us to give the system's equa- 

tions of motion the canonic form 

In the right hand sides of the first h equations the generalized forces Qj and the quantities 

within the brackets are assumed to be expressed in terms of the generalized coordinates and 

momenta. The equations obtained define the relative motion of the mapping point describing 

the system's state, in the deformed 2h-dimensional phase space. If the quantities Ui> 

the mass variation laws, and the system's initial state (qt, . . . . qho,pT, . . . , p/p) are speci- 

fied, then the system's behavior - the trajectories in phase space - uniquely defined. However, 

if the quantities ui arenotspecifiedinadvance, then the resultant indeterminacy proves to 
be useful when considering motion modes that are optimal in some sense or other. Indeed, a 

mechanical system with a known mass variation law, being investigated, can in such case be 

treated as an object of automatic regulation, described by a system of 2h first-order dif- 

ferential equations (3.4) and having h regulating organs whose positions are determined by 

the h parameters ~1. Then the main problem is to choose the control u = (ul, . . . . q,} under 

which the system's behavior becomes optimal in some predetermined sense. Obviously, in the 

general case it is necessary to treat certain characteristics of the mass variation of the 

system's points as controlling parameters too. 

4. As an example we consider one particular problem of exterior ballistics. Let a 
target A, whose motion is prescribed at any instant t(t, < t<t,), be pursued by a system of 

n controlled points with variable masses. It is assumed that each pursuing point is guided 

by the parallel approach method /3/ and that control by automatically controllable reactive 

forces ensures that all n pursuing points with arbitrary contact velocities hit on the target 
simultaneously (at instant tl ). It is required to determine the motion of the pursuing 
system under prescribed initial data, if it is known that the mass of each pursuing point 
varies by the law 

m,=.,...,[ji(t)dt]=m~.7(t) (vr1,. ,3n) 
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while the approach must take place in minimal time. We assume that target 4 and the points 
pursuing it form a similarly changing system with variable mass /4/. Then the simultaneous 

hitting of the target is ensured and the question is reduced to the study of the translation- 

al motion of a similarly changing body under a prescribed motion of one of its points. In 

this case the body possesses one degree of freedom and its position is determined by one 
generalized coordinate 11 called the radiating compression function. It is seen that for the 

mass variation law adopted the principal central inertia axes in the body remain unchanged. 

Consequently, the body's kinetic energy, referred to these axes and written with due regard 

to the known law of motion of the target, is determined by the relation 

2T _z [.\I,, (F (i) im ~‘a) - %iW&‘Q (t) + l~“ll,,]y (I) 

where F(f) and ~(1) are known time functions stipulated by the target's motion, n, MO, II, are 
constantdependinqon the initial data. The generating function of the inverse transformation 

is 
K = I'? I"@ (1)1-l -/- .ll,,L-'(1 (I)&' + 2-1:1f,,[.lf,,b~'v*(f) -. I: (I)]? (t) 

b ~~ .'ll,,a f II, ~~ const, p [p’b ~- Jf”Q (I)]V (t) 

In addition, the equalities 

I)T - IL'*/< + 21rL (1) + I: (1), s pp’k : p’M (1) + pL (1) ; L: (t) 

2x : kL2k -im 2pM (1) + tc (I), k _ c,,n:t 

hold. Here I.. .)I, P, u are known time functions. 

Let the external forces be absent and let the target's motion be uniform and rectilinear 
(0 (t) = d -= comt). Then the canonic equation system (3.4) is written as 

11' ~= /'b-'y-' (t) + M,db-', ," -~ hu + f (i)p (4.1) 

For the case given the components of the reactive thrust forces are determined by 

Q),. = ud.7, , 311 (v ~~ 1, . . 3n) 
We bound the absolute value of each thrust force by some limit, the same for each point 

"' I (~I,I, / I Qmlx j (k: 1,. .., n) 

However, for an individual point 

J oh- 1 =~ [UZ i (d.rk%}r)q”* = 1 rrl).~ 1 (k 1 , , ,A) 
&I 

where lkO is the initial distance of the k-th point of the body from the initial position of 

the center of mass. Consequently, the greatest thrust force must be developed for the point 

with the largest value of Iho. Hence we obtain 

0 i I u I< IDmax / &,,” I (4.2) 

imposing a constraint on the regulation parameter u and determining its admissible values. 

Let us find how the quantity u must vary under the specified law f(t) in order that func- 

tion p(t) vanish in minimal time with an arbitrary value of 1~' (t,), and, consequently, p(t). 

In other words, we consider the problem of the most rapid hitting of an object guided by Eqs. 

(4.1) and (4.2), into some point of a manifold defined by the equation p = 0. from some in- 

itial position (p”, p,,) on the phase plane. We find the required optimal value of u from the 

condition of the maximum over u of the function /5/ 

H = $1 [pb-'y-'(t) + M, d6-'I + 9s [ku .t f(t) pl 

As is seen, this function has a maximum with respect to I( for 

II I (J,,,;,, J l,,,., I0 I sign Q2 
The auxiliary variables d', and QJ are determined by the relations 

Q1' = --BH I ,,p = 0, X$2, all / np _m -- l@lb-‘\‘-’ (1) - &f (I) 

Hence Q, .= c, and VP = (cq - c16-'l)y-' (1). where r, and cL are constants. We note that because 

I' (Q is arbitrary we can analyze a time-optimal problem with a moving right endpoint. The 

vector 0 == {O,, O,}, tangent to manifold 11 -0, has the form 0 = (0, 0,). where I): + 0. Con- 

sequently, the transversality condition at the trajectory's right endcanbewrittenas O$,(~I)~~ 
O& (tJ = 0. Hence 

I#2 (t,) := 0, Tz == c$'l,, qz ~ c1 (tl - t) ; (by (t)) 

As we see, function &(t) preserves sign for f,,:.t t,. Consequently, each optimal value of 

control parameter u is constant, nonzero and equal to _+ I %,x 1 L,,” I depending on the sign 

of c1. In particular, for f(t) = -p (1 -- flf)-' (b = Porlst, I- fit>(l) the expressions for momentum 

P and coordinate 1' are 
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The upper signs correspond to positive values of ~1, the lower to negative; when &~>~(Pfl< 

0) we should set c,>O(c,<O) since the condition that the maximum of function EI be positive 

must be fulfilled at the final instant tl. 
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